

Qualifications

Diploma in Brewing

Module 3

Examination Syllabus 2021

Unit 1: Resource Management

Topic	Candidates should understand and be able to demonstrate using detailed examples:
Environmental sustainability	 Sustainability and climate change Energy conservation principle energy consuming activities energy reduction strategies Water conservation purpose for water in brewing operations water conservation strategies Waste minimisation brewing waste and co-products
Health and safety	 Fundamental considerations health and safety in the food and drink industry relevant national and local legislation and regulations principle of duty of care Management organisational structure and responsibilities regarding health and safety measuring and reviewing performance and training Understanding of workplace hazards and precautions techniques for assessing hazards and risks safe working practices accident investigation and reporting
Maintenance	 Aims of maintenance Approaches to maintenance Maintenance tasks types and variety of maintenance tasks in brewing Organisation planning of maintenance activities

Unit 2: Fluid Mechanics

Topic	Candidates should understand and be able to demonstrate using detailed examples:
Principles of fluid mechanics	 Forms of fluid and fluid energy Properties of moving fluids Friction loss Pumps centrifugal pumps positive displacement pumps cavitation and net positive suction head (NPSH) Valves design features and merits of different types of valves

Unit 3: Gases

Topic	Candidates should understand and be able to demonstrate using detailed examples:
Gases	 Gases used and typical applications in brewing Gas laws equations relating to pressure, temperature, volume, and density using the perfect gas laws universal gas law and gas constant Dalton's law of partial pressures Gas solubility Henry's law and the concept of gas/liquid equilibrium gas/liquid solubility and temperature effects of hydrostatic head saturation and supersaturation Gas dissolution principles of dissolving gases in liquids typical equipment for measurement and control effects of temperature and pressure on carbonation levels in beer Handling fluids supersaturated in CO₂ overcoming influences of high temp and low pressure

Diploma in Brewing

Unit 4: Heat Transfer

Topic	Candidates should understand and be able to demonstrate using detailed examples:
Principles of heat transfer	 Forms of heat energy definition of specific heat latent heat and exothermic heat calculations of energy change Heat transfer mechanisms conduction, convection, and radiation steady and unsteady heat transfer calculation of the overall heat transfer coefficient effects of fouling and scaling Insulation function of insulation
Heat transfer technology	 Heat exchanger sizing concept of the heat balance and heat transfer across a temperature gradient co-current and counter-current flow in a heat exchanger Plate heat exchanger design, construction, components, and configuration importance of fouling/scaling problems heat exchanger calculations applications in brewing Shell and tube heat exchangers design, construction, components, and configuration heat exchanger calculations applications in brewing Jacketed vessels design, construction, components, and configuration heat exchanger calculations applications in brewing

Unit 5: Utilities Part 1 (Steam and Refrigeration)

Topic	Candidates should understand and be able to demonstrate using detailed examples:
Steam	 Reasons for using steam Steam properties temperature-energy relationship as illustrated in the Mollier chart steam tables specific heat of liquid water latent heat of vaporisation concept of steam quality
	 Steam raising and distribution boiler design pipe sizes, arrangements, and design velocities insulation steam traps control valves, reducing vales and relief valves legal requirements in having a properly designed, safe system with the correct protection measures Principal steam applications
Refrigeration	 Refrigeration theory definition of refrigeration concept of pressure/temperature equilibrium in relation to the vapour compression refrigeration process refrigeration cycle function of the evaporator, compressor, condenser, and expansion valve
	 Refrigeration systems compressors reciprocating vs screw single versus multistage condensers evaporators Primary refrigerants purpose and choice physical and chemical properties safety and environmental concerns Secondary refrigerants purpose and choice chemical properties safety and environmental concerns Refrigeration applications reasons for use

Diploma in Brewing 5

Unit 6: Utilities Part 2

Topic	Candidates should understand and be able to demonstrate using detailed examples:
Water	 Different types of water and their uses (focusing on process and service water) Service water treatment
Effluent	Effluent treatment
Electricity	 The basic elements of electricity Types of current used in the brewery Electrical safety control measures Soft starter or variable speed drive selection factors
Gases	 Compressed air common systems for compressed air production components of air distribution systems quality requirements for brewing operations Oxygen specifications supply, storage, and vaporisation applications Nitrogen specifications supply, storage, and vaporisation applications
CO ₂ recovery technology	 Carbon dioxide specifications supply, storage, and vaporisation applications CO₂ recovery and pre-treatment

Unit 7: Process Control and Instrumentation

Topic	Candidates should understand and be able to demonstrate using detailed examples:
Process control	Basic control elements Sensors, controllers, and actuators Basic on/off control timers, thermostats, pressure switches, proximity switches, and others Sequence control description of programmable logic controller (PLC) examples of plc applications Aim of process control Principles of process control Control arrangements Typical control systems Actuation Control system arrangements self-actuating controllers individual electronic analogue controls small local computer control Supervisory Control and Data Acquisition (SCADA), Management Information Systems (MIS) and other large digital systems Comparative costs
Instrumentation	 Factors determining the choice of sensors Typical conventional sensors including pressure, volume flow, temperature, mass flow level and vessel contents Typical analytical sensors including CO₂, O₂, optical devices, pH, density, and alcohol content

Diploma in Brewing 7

Unit 8: Materials of Construction

Topic	Candidates should understand and be able to demonstrate using detailed examples:
Classification and properties	 Carbon and low alloy steels Stainless steels Other metals including copper (and alloys), aluminium and cast iron Plastics and glass Corrosion
Applications and limitations	Advantages and disadvantagesApplications
Hygienic design	 Principles of hygienic design Requirements for hygienic design with regards to material, equipment, and installation Understanding the role of hygiene organisations and how to utilise them